16
6AV2124-0UC02-0AX1安装调试
变频器A、B、C端子为异常输出端,A、C之间相当于一个常开开关,B、C之间相当于一个常闭开关,在变频器工作出现异常时,A、C接通,B、C断开。电路工作过程说明如下。
一、供电控制
按下按钮SB1,接触器KM线得电,KM主触点闭合,工电源经KM主点为频器提供电源,同时KM常开轴助触点闭合,锁定KM线圈供电。按下按钮SB2,接触器KM线圈失电,KM线圈失电,KM主触点断开,切断变频器电源。
二、异常跳闸保护
若变频器在运行过程中出现异常,A、C之间闭合,B、C之间断开。B、C之间断开使接触器KM线圈失电,KM主触点断开,切断变频器供电;A、C之间闭合使继电器KA线圈得电,KA触点闭合,振铃HB和报HL得电,发出变频器工作异常声光报警。
按下按钮SB3,继电器KA线圈失电,KA常开触点断开,HB、HL失电,声光报警停止
变频器过电流的现象
(1) 重新启动时,一升速就跳闸,这是过电流十分严重的现象。主要原因有:负载短路,机械部位有卡住;逆变模块损坏;电动机的转矩过小等现象引起。
(2) 上电就跳,这种现象一般不能复位,主要原因有:模块坏、驱动电路坏、电流检测电路坏。
(3) 重新启动时并不立即跳闸而是在加速时,主要原因有:加速时间设置太短、电流上限设置太小、转矩补偿(V/F)设定较高。
变频器过电流的原因及处理对策
(1) 变频器输出短路
原因:常常是由于负载短路而引起的,较常见的就是电机短路(电机振动引起接线松动短接而造成短路)。
对策:我们在平时生产期间,现场都设**械、电气巡检人员,定期检修期间,对各机械、电气设备进行清扫和紧固螺丝。
(2) 机械部位有卡住或轧钢现场时常会出现“卡钢”现象。此时负载突然增大时,电流也会随之增大,当电流**过变频器设定的过电流值时,为保护变频器内部器件,会报“过电流”故障跳闸。
常见原因:传动装置损坏;工艺设定不合理板坯过宽,板型不好。
对策:经常巡检机械装置,改善工艺,提高操作工操作水平。
(3) 传动机构的机械惯性过大,电机的容量相对偏小
原因:当传动机械惯性大时,电机容量又偏小,会(尤其在刚开始启动时)出现“小马拉大车”的现象,造成电机电流偏大,导致变频器过流跳闸。
对策:对于大惯性负载,在保证电机和负载匹配的前提下,可适当提高变频器低速启动时的电压提升,延长变频器的加速时间等方法来防止变频器过流故障的发生。
(4) 变频器启动加速时间设定太短;V/F特性电压提升设定太大。
原因:变频器启动加速时间设定太短变频器输出频率的变化远远**过电机转速的变化(失速);V/F电压提升太大,变频器输出频率已经比较高了,而电机转速还比较低(即电机转速的变化滞后于变频器频率的变化),也会造成失速故障。这种“失速”就会导致变频器过流故障。
对策:延长变频器的加速时间设定;另外,低速电压提升要也要在实际中反复实验,不要设置太大,否则会导致变频器一起动就发生过流故障


器件故障引起的过电流
1.电流为0的‘过电流’
(1)IGBT开路
如果IGBT已经因损坏而开路,已经没有电流了,但集电极始终处于高电位状态,驱动模块就检测到“过电流”信号。
(2)驱动模块无输出
如果驱动模块发生了故障,没有了输出信号,IGBT就始终处于截止状态,也没有电流了,集电极处于高电位状态,CPU也将得到“过电流”信号。
2.检测点断线
有时,过电流的检测线或因插件接触不良,或传输线本身因受机械损伤而断线,则不论IGBT是否有电流通过,CPU也可能因此而得到“过电流”。
三、过电压(OV)的跳闸原因
国产变频器的进线电压一律是380V,直流电压上限值通常定为700V或720V;进口变频器因为进线电压的上限值较高,所以,直流电压的上限值常定为800V。
电源侧的过电压原因
1.电源电压过高
例如,企业变电所的容量偏低,白天负载较重,把变压器的二次电压调到高挡。一到晚上,电压就偏高了。
2.电源侧有冲击电压
一是在打雷时,常常使变频器过电压跳闸;
二是车间变电室为了提高功率因数,需要配置电力电容器,当电容器合上时,变频器也会因过电压而跳闸。
运行中的过电压
1.拖动系统释放位能
主要发生在起重机械放下重物时,电动机处于发电状态,如果制动电阻值太大,制动电流和制动力太小,重物下降速度太快,将可能导致过电压跳闸。
2.突然失载
例如生产机械在运行过程中,皮带突然断裂,动态转矩突然加大,将产生很大的加速度,使电动机处于再生状态,导致过电压跳闸。
减程中的过电压
1.减速时间太短
频率下降时,电动机将处于发电状态。减速时间预置太短,电动机的同步转速下降太快,发电量较大,导致过电压跳闸。
2.制动电路的原因
制动电路包括制动电阻和制动单元,当直流电压偏高时,用于放电。
(1)制动电阻值太大
有的设备惯性很大,处于再生制动状态时,发电量较大,如制动电阻大,则放电电流小,将因来不及放电而过电压。
有时,制动电阻的连接线在接线处接触不良,也会导致同样后果。
(2)制动电阻损坏
因为制动电阻是个发热体,所以较易损坏。而一旦损坏,将不能放电,减速时较易因过电压而跳闸。
(3)制动单元损坏
制动单元损坏后,也同样不能放电,因过电压而跳闸。
采样故障引起的过电压
如果实际测量所得的电压值是正常的,而显示屏显示的数据很大,则说明电压采样电路发生了故障。
四、欠电压()的跳闸原因
电源侧的欠电压原因
1.电源电压不足
主要是电源变压器的容量不够大,负载一重,就容易发生因欠电压而跳闸。
按照国家标准,进线电压的下限值是380×0.9=342V,变频器是在直流电路里进行电压采样的。则342V时的直流平均电压是342×1.35=462V。但实际变频器里的下限直流电压常定为380V。这是因为欠电压时,不会损坏主电路的器件。所以,只要电动机的电流在允许范围内,拖动系统又能正常运行,就可以不跳闸。
2.进线的输入端子松动
当电源进线的接线端子松动时,接线端子处的接触电阻增大,电压降也增大,实际输入到变频器的电压就降低了,也可能引起欠电压。
3.电源侧缺相
电源侧缺相后,变频器进线处的三相全波整流变成了单相全波整流了,整流后的平均电压只有进线电压的0.9倍,即使电源电压为上限值,整流后的平均电压也只有:
UD=0.9US=380×0.9=378V
所以,也会导致欠电压跳闸。
整流滤波电路引起的欠电压
1.整流管损坏
三相全波整流桥中,如果有一个整流管损坏,整流后的平均电压将下降,导致欠电压跳闸。
2.限流电路故障
限流电路包括限流电阻和短路接触器(或晶闸管)。如限流电阻损坏,则滤波电容器不能充电,导致欠电压;此外,如短路接触器损坏,则限流电阻也必损坏,较终也导致欠电压。
3.滤波电容器老化
滤波电容器老化的结果,是电容量减小。如电容量低于标称容量的85%,直流电压将低于正常值。
4.熔断器已断
许多变频器的直流电路里装有熔断器,如果熔断器已经熔断或接触不良,也必然导致欠电压跳闸。
五、过热(OH)的跳闸原因
发热方面的原因
1.环境温度太高
环境温度过高时,即使变频器的输出电流并未过载,逆变模块的温度也可能因**过允许值而跳闸。
2.运行中的过热
(1)变频器轻微过载
变频器轻微过载时,不会引起过电流跳闸,但时间长了,如散热又不很通畅的话,也可能导致过热跳闸。
有的变频器对整流模块的过热和逆变模块的过热是分开处理的。
(2)载波频率高
载波频率高,IGBT的开关次数多,开关损耗大,模块的温度容易升高,即使电流未**过额定电流,也可能引起逆变模块的过热。
(3)IGBT的驱动不足
如果IGBT的驱动电压不足,容易使IGBT因进入放大状态而过热。
散热方面的原因
1.风扇方面
主要原因有:
(1)滤网堵塞
变频器的风扇上面装有滤网,目的是防止异物进入。在灰尘较大的车间里,变频器风扇上的滤网常常被灰尘堵塞,需要经常清理。
(2)风扇损坏
小容量变频器所配置的风扇,使用寿命较短,容易损坏。当听到风扇在运行中的响声较大时,就应该更换。
(3)风扇电路故障
风扇的控制电路发生故障,也是常有的事。所以,当发现风扇不转时,须判别是风扇本身的问题呢,还是控制电路的问题。
2. 散热板方面
整流模块和逆变模块都是装在散热板上面的,散热板的背面有许多散热槽。散热槽也很容易被灰尘堵塞,导致模块过热。
3. 控制柜通风不畅
多数变频器是装在控制柜里的,控制柜也存在着通风是否良好的问题。
六、控制电路的故障跳闸
外部输入电路的故障
1.模拟量输入电路
(1)代码LOV
含义是电压信号输入电路发生了故障。在大多数情况下,外部的电压信号都是通过电位器输入的,在调速比较频繁的机器上,电位器的滑动触点很容易接触不良。
(2)代码LOI
含义是电流信号输入电路发生了故障。
电流信号常常是从传感器传输过来的,距离比较远,线又比较细,容易因断线而发生故障,也有时是传感器本身的问题。
2.代码EXT
含义是开关量输入电路发生故障。如果其他的输入信号都能起作用,只有一个不起作用,问题一定在不起作用那一路的输入电路中;如果所有的输入信号都不起作用的话,就需要检查变频器上的24V端子和10V端子是否正常。
其他常见故障
1.代码DE
采用有反馈矢量控制方式时,因为编码器是安装在电动机的输出轴上的,而输出线要接到变频器上,中间距离往往较长,且线径又小,所以容易断线,或连接线接触不良,编码器发生故障后,电动机的运行很不稳定,甚至反转。
2.显示屏损坏
这是不需要代码的,反正显示屏不显示了。特点是电动机能够运行,但显示屏却是黑屏,不得不更换。
3.代码CCF
含义是键盘出错。有关资料说明,在开机5s内,如CPU仍得不到键盘的信息,就认为键盘电路发生了故障。
3.接插件接触不良
变频器的控制板上,有许多接插件,这些接插件时有松动,必须经常检查