西门子驱动6SL3120-2TE15-0AD0参数详细
一、问题提出:
1 )计算机端是如何编程来实现接收和发送端口的数据的?
2 )如何设置特殊寄存器 D8120 ?
3 )可编程序控制器端是如何编程来接收和发送端口的数据的?
4 )如何将计算机和可编程序控制器连接起来?
二、概述
通用计算机软件丰富,界面友好,操作便利,使用通用计算机作为可编程控制器的编程工具也十分方便,可编程控制器与计算机的通信近年来发展很快。在可编程控制器与计算机连接构成的综合系统中,计算机主要完成数据处理、修改参数、图像显示、打印报表、文字处理、编制可编程控制器程序、工作状态监视等任务。可编程控制器仍然直接面向现场、面向设备,进行实时控制。可编程控制 器与计算机的连接,可以更有效地发挥各自的优势,互补应用上的不足,扩大可编程控制器的处理能力。
为了适应可编程控制器网络化的要求,扩大联网功能,几乎所有的可编程控制器厂家,都为可编程控制器开发了与上位机通讯的接口或**通讯模块。一般在小型可编程控制器上都设有 RS422 通讯接口或 RS232C 通讯接口;在中大型可编程控制器上都设有**的通讯模块。如:三菱 F 、 F1 、 F2 系列都设有标准的 RS422 接口, FX 系列设有 FX-232AW 接口、 RS232C 用通讯适配器 FX-232ADP 等。可编程控制器与计算机之间的通讯正是通过可编程控制器上的 RS422 或 RS232C 接口和计算机上的 RS232C 接口进行的。可编程控制器与计算机之间的信息交换方式,一般采用字符串、双工或半、异步、串行通信方式。因此可以这样说,凡具有 RS232C 口并能输入输出字符串的计算机都可以用于和可编程控制器的通讯。
运用 RS232C 和 RS422 通道,可容易配置一个与外部计算机进行通讯的系统。该系统中可编程控制器接受控制系统中的各种控制信息,分析处理后转化为可编程控制器中软元件的状态和数据;可编程控制器又将所有软元件的数据和状态送入计算机,由计算机采集这些数据,进行分析及运行状态监测,用计算机可改变可编程控制器的初始值和设定值,从而实现计算机对可编程控制器的直接控制。
三、如何采用 FX-232ADP 的连接通信
RS232C 用通讯适配器 FX-232ADP 能够以无规约方式与各种具有 RS232C 接口的通讯设备连接,实现数据交换。通讯设备包括计算机、条形码读出器、图像器等。使用 FX-232ADP 时,也可用调制解调器进行远程通讯。
(一)通讯系统的连接
图中是采用 FX-232ADP 接口单元,将一台通用计算机与一台 FX2 系列 plc 连接进行通讯的示意图。
(二)通讯操作
FX2 系列 plc 与通讯设备间的数据交换,由特殊寄存器 D8120 的内容*,交换数据的点数、地址用 RS 指令设置,并通过 plc 的数据寄存器和文件寄存器实现数据交换。下面对其使用做一简要介绍。
1 .通讯参数的设置
在两个串行通讯设备进行任意通讯之前,必须设置相互可辨认的参数,只有设置一致,才能进行可靠通讯。这些参数包括波特率、停止位和奇偶校验等,它们通过位组合方式来选择,这些位存放在数据寄存器 D8120 中
可取代 b8~b12 用于 FX-485 网络
使用说明如下:
( 1 )如 D8120 = 0F9EH 则选择下列参数。
E = 7 位数据位、偶校验、 2 位停止位
9 =波特率为 19200bps
F =起始字符、结束字符、硬件 1 型( H/W1 )握手信号、单线模式控制
0 =硬件 2 型( H/W2 )握手信号为 OFF
( 2 )起始字符和结束字符可以根据用户的需要自行修改。
( 3 )起始字符和结束字符在发送时自动加到发送的信息上。在接收信息过程中,除非接收到起始字符,不然数据将被忽略;数据将被连续不断地读进直到接到结束字符或接收缓冲区全部占满为为止。因此,必须将接收缓冲区的长度与所要接收的较长信息的长度设定的一样。
2 .串行通讯指令
该指令的助记符、指令代码、操作数、程序步如下表所示。
RS 指令用于对 FX 系列 PLC 的通讯适配器 FX-232ADP 进行通讯控制,实现 PLC 与外围设备间的数据传送和接收。 RS 指令在梯形图中使用的情况如下图所示。
[S] *传送缓冲区的首地址
[m] *传送信息长度
[D] *接收缓冲区的首地址
[n] *接收数据长度,即接收信息的较大长度
( 1 ) RS 指令使用说明
( a )发送和接收缓冲区的大小决定了每传送一次信息所允许的较大数据量,缓冲区的大小在下列情况下可加以修改。
发送缓冲区――在发送之前,即 M8122 置 ON 之前。
接收缓冲区――信息接收完后,且 M8123 复位前。
( b )在信息接收过程不能发送数据,发送将被延迟( M8121 为 ON )。
( c )在程序中可以有多条 RS 指令,但在任一时刻只能有一条被执行。
( 2 ) RS 指令自动定义的软元件。
终端电阻是为了在通信电缆中的信号反射在通信过程中,有两种信号因导致信号反射:阻抗不连续和阻抗不匹配。
阻抗不连续,信号在传输线末端突然遇到电缆阻抗很小甚至没有,信号在这个地方就会引起反射。这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的。这种反射的方法,就必须在电缆的末端跨接一个与电缆的特性阻抗同样大小的终端电阻,使电缆的阻抗连续。由于信号在电缆上的传输是双向的,因此,在通讯电缆的另一端可跨接一个同样大小的终端电阻。
引起信号反射的另个原因是数据收发器与传输电缆之间的阻抗不匹配。这种原因引起的反射,主要表现在通讯线路处在空闲方式时,整个网络数据混乱。
要减弱反射信号对通讯线路的影响,通常采用噪声抑制和加偏置电阻的方法。在实际应用中,对于比较小的反射信号,为简单方便,经常采用加偏置电阻的方法。
补充说明:
1.RS-485需要2个终接电阻,接在传输总线的两端,其阻值要求等于传输电缆的特性阻抗。在矩距离传输时可不需终接电阻,即一般在300米以下不需终接电阻。
2.为了抑制干扰,RS485总线常在最后一台设备之后接入一个120欧的电阻(即为上面所述)。
3.RS-485与RS-422的共模输出电压是不同的。RS-485共模输出电压在-7V至+12V之间, RS-422在-7V至+7V之间,RS-485较小输入阻抗为12KΩ;RS-422是4kΩ;RS-485满足所有RS-422的规范,所以RS-485的驱动器可以用在RS-422网络中应用。
梯形图的编程方式是指根据功能表图设计出梯形图的方法。为了适应各厂家的PLC在编程元件、指令功能和表示方法上的差异,下面主要介绍使用通用指令的编程方式、以转换为中心的编程方式、使用STL指令的编程方式和STL指令的编程方式。
为了便于分析,我们设刚开始执行用户程序时,系统已处于初始步(用初始化脉冲M8002将初始步置位),代表其余各步的编程元件均为OFF,为转换的实现做好了准备。
1.使用通用指令的编程方式
编程时用辅助继电器来代表步。某一步为活动步时,对应的辅助继电器为“1”状态,转换实现时,该转换的后续步变为活动步。由于转换条件大都是短信号,即它存在的时间比它的后续步为活动步的时间短,因此应使用有记忆(保持)功能的电路来控制代表步的辅助继电器。属于这类的电路有“起保停电路”和具有相同功能的使用SET、RST指令的电路。
如图5-27a所示Mi-1、Mi和Mi+l是功能表图中顺序相连的3步,Xi是步Mi之前的转换条件
使用通用指令的编程方式示意图
编程的关键是找出它的起动条件和停止条件。根据转换实现的基本规则,转换实现的条件是它的前级步为活动步,并且满足相应的转换条件,所以步Mi变为活动步的条件是Mi-1为活动步,并且转换条件Xi=1,在梯形图中则应将Mi-1和Xi的常开触点串联后作为控制Mi的起动电路,如图5-27b所示。当Mi和Xi+1均为“l”状态时,步Mi+1变为活动步,这时步Mi应变为不活动步,因此可以将Mi+1=1作为使Mi变为“0”状态的条件,即将Mi+1的常闭触点与Mi的线圈串联。也可用SET、RST指令来代替“起保停电路”,如图5-27c所示。
这种编程方式仅仅使用与触点和线圈有关的指令,任何一种PLC的指令系统都有这一类指令,所以称为使用通用指令的编程方式,可以适用于任意型号的PLC。
如图5-28所示是根据液压滑台系统的功能表图(见图5-26b)使用通用指令编写的梯形图。开始运行时应将M300置为“1”状态,否则系统无法工作,故将M8002的常开触点作为M300置为“1”条件。M300的前级步为M303,后续步为M301。由于步是根据输出状态的变化来划分的,所以梯形图中输出部分的编程较为简单,可以分为两种情况来处理:
1)某一输出继电器仅在某一步中为“1”状态,如Y1和Y2就属于这种情况,可以将Y1线圈与M303线圈并联,Y2线圈与M302线圈并联。看起来用这些输出继电器来代表该步(如用Y1代替M303),可以节省一些编程元件,但PLC的辅助继电器数量是充足、够用的,且多用编程元件并不增加硬件费用,所以一般情况下全部用辅助继电器来代表各步,具有概念清楚、编程规范、梯形图易于阅读和容易查错的优点。
2)某一输出继电器在几步中都为“1”状态,应将代表各有关步的辅助继电器的常开触点并联后,驱动该输出继电器的线圈。如Y0在快进、工进步均为“1”状态,所以将M301和M302的常开触点并联后控制Y0的线圈。注意,为了避免出现双线圈现象,不能将Y0线圈分别与M301和M302的线圈并联。